

Journal of Agriculture, Food, Environment and Animal Sciences Tarım, Gıda, Çevre ve Hayvancılık Bilimleri Dergisi http://www.jafeas.com, ISSN: 2757-5659

# Evaluation of Roselle (*Hibiscus sabdariffa* L.) Accessions for Agronomic and Weed-Suppressive Potentials in the Rainforest-Savannah Transition Agroecology of Nigeria

Ibukunolu UDEMBA1\*, Olubunmi ALUKO2, Adedotun ADEWUMI3, Olatunde AYODELE4

<sup>1-4</sup>Institute of Agricultural Research and Training, Obafemi Awolowo University, PMB 5029 Moor Plantation, Ibadan, NIGERIA

<sup>1</sup>https://orcid.org/0000-0001-9069-0524, <sup>2</sup>https://orcid.org/0000-0003-2896-9668 <sup>3</sup>https://orcid.org/0009-0002-3632-5176, <sup>4</sup>https://orcid.org/0000-0001-7348-7954

\*Corresponding author: idowuibukunolu2012@yahoo.com

| Research Article                                                                                                                                                                                                                          | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article History:<br>Received:10 January 2025<br>Accepted:12 May 2025<br>Published online: 01 June 2025<br>Keywords:<br>Rainforest-Savannah Transition<br>Agroecology<br>Accessions<br>Roselle Growth<br>Weed Suppression<br>Roselle Yield | Roselle has rapid broadleaves proliferation potential, dense architecture, and allelopathic attributes which can aid in mitigating weed growth. This study assessed some Roselle accessions for growth, yield, and weed-suppressive traits in Ibadan, Nigeria. The study was conducted using a Randomized Complete Block Design (RCBD) and replicated twice. Data on plant height (cm), number of leaves/plant, leaf area (cm <sup>2</sup> ), and stem diameter (cm) were collected fortnightly from 4 to 12 weeks after sowing (WAS). Calyx yield (kg), 100-seed weight (g), and weed weights were determined at harvest. All data were subjected to analysis of variance at $\alpha_{0.05}$ . The Roselle accessions differed statistically for all traits except dry calyx yield and weights of 100 seeds. The highest and least number of leaves/plant and leaf area was 92.75 leaves/plant (A <sub>10</sub> R <sub>2</sub> ) and 145.00 leaves/plant (A <sub>3</sub> <sup>2</sup> R <sub>2</sub> ); 106.91 cm <sup>2</sup> (R <sub>5</sub> P <sub>7</sub> ) and 186.98 cm <sup>2</sup> (A <sub>3</sub> <sup>2</sup> R <sub>2</sub> ), respectively. Meanwhile, A <sub>6</sub> R <sub>2</sub> had the highest values for both dry calyx yield (2.62 t/ ha) and weights of 100 seeds (0.37 kg). The weight of fresh and dry weeds ranged from 116 g/m <sup>2</sup> (A <sub>6</sub> R <sub>3</sub> ) to 572 g/m <sup>2</sup> (A <sub>7</sub> R <sub>1</sub> ) and 64 g/m <sup>2</sup> (A <sub>10</sub> R <sub>2</sub> and A <sub>6</sub> R <sub>3</sub> ) to 284 g/m <sup>2</sup> (A <sub>7</sub> R <sub>1</sub> ), respectively. The yield and weed suppression potential of the accessions were largely dependent on their genetic capacity for the trait. However, accession A <sub>6</sub> R <sub>2</sub> is recommended for optimum dry calyx and seed production while cultivation of accessions A <sub>3</sub> R <sub>2</sub> , A <sub>3</sub> <sup>2</sup> R <sub>2</sub> , A <sub>3</sub> R <sub>1</sub> , and A <sub>6</sub> R <sub>3</sub> can effectively mitigate weed growth. |
|                                                                                                                                                                                                                                           | O, Adewumi A, Ayodele O., 2025. Evaluation of Roselle (Hibiscus sabdariffa gronomic and Weed-Suppressive Potentials in the Rainforest-Savannah Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Agroecology of Nigeria. Agriculture, Food, Environment and Animal Sciences, 6(1): 293-302.

### INTRODUCTION

Roselle (*Hibiscus sabdariffa* L.) is an annual, fast-growing, herbaceous shrub within the large *Malvaceae* family (alongside okra, kenaf, and cotton). It is usually cultivated for its stem, fibre, leaves, seeds, and calyces (Satyanarayana et al., 2015). Roselle's height can range between 0.5 and 2 m (El-Naim et al., 2012). The calyces possess a multitude of applications spanning food, feed, beverages, nutraceuticals, cosmeceuticals, and pharmaceuticals (Mohamed et al., 2012; IIyas et al., 2021). Additionally, Roselle presents substantial agronomic and ecological benefits, thriving with minimal management and demonstrating resilience to various environmental conditions, including adverse ones (Ugaoo, 2024). This resilience is possibly attributed to its deep tap root (Ranjan, 2019) which facilitates efficient access to water and nutrients.

Notably, Roselle grows rapidly, producing broad leaves with dense canopy (Yirzagla et al., 2023; Pelczar, 2024). This effectively creates a shading effect, limiting light availability to weed seedlings around the plant and in tandem suppressing their growth (Pelczar, 2024). The ground cover and prolific root system of Roselle (Vasavi et al., 2019) also minimize the space for weeds establishment. Moreover, Roselle exerts an allelopathic effect on surrounding weeds, releasing biochemical (phenolic) compounds that impede weeds' germination and root growth (Pukclai and Kato-Noguchi, 2011). Hence, cultivation of Roselle may limit dependence on herbicides for weed control methods through weed smothering. Thus lowering production costs, and minimizing negative environmental impact. This study therefore aims to evaluate the agronomic traits of some Roselle accessions and their ability to suppress weed in Rainforest-Savannah Transition Agroecology of Nigeria, sequel to paucity of information on this.

### **MATERIAL and METHOD**

The field experiment was conducted at the research field of the Institute of Agricultural

Research and Training, Ibadan during the raining season of 2023. The land was ploughed, harrowed, and partitioned into plots separated by a 1m alley. Subsequently, using a randomized complete block design, seeds of ten (10) Roselle accessions (A<sub>10</sub>R<sub>2</sub>, A<sub>12</sub>R<sub>3</sub>, A<sub>6</sub>R<sub>2</sub>, A<sub>6</sub>R<sub>3</sub>, A<sub>3</sub>R<sub>1</sub>, R<sub>5</sub>P<sub>7</sub>, A<sub>8</sub>R<sub>3</sub>, A<sub>7</sub>R<sub>1</sub>, A<sub>3</sub>R<sub>2</sub> and A<sub>3</sub><sup>2</sup>R<sub>2</sub>) were sown (1 accession per plot). These were spaced using a dimension of 1 m × 1 m, and replicated twice. From 4 to 12 weeks after sowing (WAS), data were collected on plant height, number and area of leaves; and stem diameter at intervals of two weeks. Leaf area was determined using the leaf area model described by Nnebue et al. (2015).

Leaf area= 5.20 + 0.5179 LW.

Where L and W are leaf length and width, respectively.

At harvest, fresh calyx yield and weight of 100 seeds were determined following manual processing while fresh weight of weeds per plot was assessed using 0.5 m × 0.5 m quadrant, positioned randomly within the plot. Meanwhile, dry weights of calyx and weed samples were determined after drying to constant weight. All data were subjected to analysis of variance using SPSS software and significant means separated using the Duncan multiple range test at a 5% level of probability.

### **RESULTS and DISCUSSION**

Across weeks of evaluation, significant variation was observed among the ten (10) Roselle accessions (RAs) for growth parameters except stem diameter at 4 WAS. Plant height of the RAs at 4 and 6 weeks after sowing (WAS) ranged from 9.17 cm ( $A_{3^2}R_2$ ) to 13.88 cm ( $A_7R_1$ ) and 19.50 cm ( $A_{3^2}R_2$ ) to 29 cm ( $A_6R_3$ ), respectively (Table 1). Notably, the tallest RAs at these plant ages had heights that were statistically at par with other RAs except  $A_{3^2}R_2$  at both WAS; and  $A_{10}R_2$ ,  $A_{12}R_3$ ,  $A_6R_2$ ,  $R_5P_7$ , and  $A_8R_3$  at 6 WAS (Table 1). Moreover, at 8, 10, and 12 WAS, the shortest RAs were  $A_7R_1$  (30.48 cm); and  $A_{12}R_3$  (61.75 cm and 81.80 cm), respectively while RAs  $A_3R_1$  (48.95 cm),  $A_6R_3$  (78.5 cm) and  $A_3R_1$  (100.38) had the highest stem elongation at these plant ages, respectively (Table 1).

|                               | Weeks after Sowing |         |           |          |         |
|-------------------------------|--------------------|---------|-----------|----------|---------|
| Accessions                    | 4                  | 6       | 8         | 10       | 12      |
| $A_{10}R_2$                   | 11.28ab            | 20.13cd | 36.07cde  | 64.25cd  | 84.38b  |
| $A_{12}R_3$                   | 10.27ab            | 20.10cd | 34.45ed   | 61.75d   | 81.80b  |
| $A_6R_2$                      | 10.88ab            | 21.50cd | 42.33abcd | 72.50ab  | 88.75ab |
| $A_6R_3$                      | 12.50ab            | 29a     | 43.83abc  | 78.75a   | 87.97ab |
| $A_3R_1$                      | 12.92a             | 27.5a   | 48.95a    | 70.70abc | 100.38a |
| $R_5P_7$                      | 12.62ab            | 22.25cd | 41.67abcd | 76.08ab  | 99.06a  |
| A8R3                          | 12.18ab            | 23.50bc | 44.03abc  | 68.42bcd | 84.97b  |
| $A_7R_1$                      | 13.88a             | 28.67a  | 30.48e    | 64.25cd  | 82.58b  |
| A <sub>3</sub> R <sub>2</sub> | 12.20ab            | 26.67ab | 47.13ab   | 78.50a   | 98.86a  |
| $A_3^2 R^2$                   | 9.17b              | 19.50d  | 39.92bcd  | 72.00abc | 89.90ab |

Table 1. Variation in plant height (cm) of Roselle accessions at specified sampling dates

Means with similar letters are not statistically different at 0.05 level of probability

The tallest RAs at the immediate mentioned plant ages differed significantly in height from  $A_{10}R_2$ ,  $A_{12}R_3$ , and  $A_7R_1$  at the three plant ages;  $A_3^2R_2$  at 8 WAS; and  $A_8R_3$  at 10 and 12 WAS (Table 1).

The numerical variation in stem diameter of the RAs at 4 WAS was not significant (Table 2).

|            | Weeks after Sowing |          |        |          |          |
|------------|--------------------|----------|--------|----------|----------|
| Accessions | 4                  | 6        | 8      | 10       | 12       |
| A10R2      | 0.20               | 0.40d    | 0.82bc | 1.10cd   | 1.38 d   |
| A12R3      | 0.20               | 0.43cd   | 0.75b  | 1.05d    | 1.47bcd  |
| A6R2       | 0.20               | 0.48bcd  | 0.77b  | 1.30a    | 1.60a    |
| A6R3       | 0.20               | 0.53abcd | 0.98a  | 1.28ab   | 1.54ab   |
| A3R1       | 0.20               | 0.52abcd | 0.93ab | 1.20abc  | 1.43bcd  |
| R5P7       | 0.20               | 0.55abc  | 0.82bc | 1.17abcd | 1.43bcd  |
| A8R3       | 0.20               | 0.58ab   | 1.00a  | 1.23abc  | 1.50abcd |
| A7R1       | 0.20               | 0.63a    | 0.99a  | 1.23abc  | 1.53abc  |
| A3R2       | 0.20               | 0.61ab   | 0.98a  | 1.23abc  | 1.48abcd |
| A32R2      | 0.21               | 0.63a    | 0.74b  | 1.13bcd  | 1.40cd   |

Table 2. Variation in stem diameter (mm) of Roselle accessions across plant ages

Means with similar letters are not statistically different at 0.05 level of probability

Howbeit, from 6 to 8 WAS, accessions  $A_7R_1$  (for both WAS) and  $A_{3}^2R_2$  (for only 6 WAS) had the widest stems and were significantly different from  $A_{10}R_2$ ,  $A_{12}R_3$ , and  $A_6R_2$  at both plant ages; and  $A_{3}^2R_2$  at 8 WAS. Meanwhile,  $A_6R_2$  had the broadest stem diameter from 10 to 12 WAS and compared statistically with the diameter recorded for all Roselle Accessions (RAs) except  $A_{10}R_2$ ,  $A_{12}R_3$ , and  $A_3^2R_2$  at both WAS;  $A_3R_1$  and  $R_5P_7$  at 12 WAS (Table 2).

No accession was consistent in producing the highest quantity of leaves across the weeks of evaluation (Table 3). At 4, 6, 8, 10 and 12 WAS, the number of leaves counted on the RAs ranged from 6.83 (A<sub>10</sub>R<sub>2</sub>) to 10.50 (R<sub>5</sub>P<sub>7</sub>); 13.08 (A<sub>10</sub>R<sub>2</sub>) to 24.33 (A<sub>8</sub>R<sub>3</sub>); 30.25 (A<sub>12</sub>R<sub>3</sub>) to 94.67 (A<sub>6</sub>R<sub>3</sub>); 72.50 (A<sub>10</sub>R<sub>2</sub>) to 109.25(R<sub>5</sub>P<sub>7</sub>) and 92.75 (A<sub>12</sub>R<sub>3</sub>) to 145.00 (A<sub>3</sub><sup>2</sup>R<sub>2</sub>), respectively (Table 3). The number of leaves on the best foliage-producing RA at each plant age was statistically higher than the number counted from other RAs except A<sub>12</sub>R<sub>3</sub>, A<sub>6</sub>R<sub>2</sub>, A<sub>6</sub>R<sub>3</sub>, A<sub>3</sub>R<sub>1</sub>, A<sub>8</sub>R<sub>3</sub>, A<sub>7</sub>R<sub>1</sub>, A<sub>3</sub>R<sub>2</sub>, A<sub>3</sub><sup>2</sup>R<sub>2</sub> at 4 WAS; A<sub>6</sub>R<sub>3</sub> and A<sub>7</sub>R<sub>1</sub> at 6 WAS; A<sub>7</sub>R<sub>1</sub> at 8 WAS, A<sub>6</sub>R<sub>3</sub>, A<sub>3</sub>R<sub>1</sub>, and A<sub>3</sub><sup>2</sup>R<sub>2</sub> at 10 WAS and A<sub>6</sub>R<sub>2</sub>, A<sub>6</sub>R<sub>3</sub>, A<sub>3</sub>R<sub>1</sub>, R<sub>5</sub>P<sub>7</sub>, A<sub>8</sub>R<sub>3</sub>, A<sub>7</sub>R<sub>1</sub> and A<sub>3</sub>R<sub>2</sub> at 12 WAS (Table 3). Notably, either A<sub>10</sub>R<sub>2</sub> or A<sub>12</sub>R<sub>3</sub> produced the least quantity of foliage at each plant age of evaluation.

|            | Weeks after Sowing |          |         |         |          |
|------------|--------------------|----------|---------|---------|----------|
| Accessions | 4                  | 6        | 8       | 10      | 12       |
| A10R2      | 6.83b              | 13.08f   | 36.17d  | 72.50d  | 99.50bc  |
| A12R3      | 7.25ab             | 16.50def | 30.25d  | 74.25d  | 92.75c   |
| A6R2       | 10.00ab            | 14.83ef  | 70.50bc | 92.50bc | 121.00ab |
| A6R3       | 9.42ab             | 21.50abc | 94.67a  | 108.58a | 144.60a  |
| A3R1       | 8.00ab             | 14.00f   | 71.08bc | 106.92a | 134.50a  |
| R5P7       | 10.50a             | 18.50cde | 54.50c  | 109.25a | 134.42a  |
| A8R3       | 9.50ab             | 24.33a   | 72.42bc | 87.00c  | 123.00a  |
| A7R1       | 10.00ab            | 23.17ab  | 78.83ab | 87.00c  | 121.25ab |
| A3R2       | 9.17ab             | 15.75def | 59.33c  | 96.00bc | 138.75a  |
| A32R2      | 7.83ab             | 19.33bcd | 61.83bc | 100.5ab | 145.00a  |

Table 3. Variation in foliage production of Roselle accessions at specified sampling date

Means with similar letters are not statistically different at 0.05 level of probability

The maximum leaf area at 4 WAS was recorded from  $A_7R_1$  (29.67 cm<sup>2</sup>) and was significantly identical to  $A_6R_3$  for this trait (Table 4). At 6 WAS, 48.62 cm<sup>2</sup>, the highest leaf area was obtained from  $A_6R_3$  which differed statistically from only  $A_{12}R_3$ .

|            | Weeks after Sowing |         |         |           |          |
|------------|--------------------|---------|---------|-----------|----------|
| Accessions | 4                  | 6       | 8       | 10        | 12       |
| A10R2      | 14.33c             | 36.28ab | 64.08bc | 91.99bcd  | 152.21bc |
| A12R3      | 15.16c             | 28.58b  | 65.13bc | 86.23bcde | 143.30bc |
| A6R2       | 16.80bc            | 41.30ab | 68.83bc | 104.15b   | 153.34b  |
| A6R3       | 23.59ab            | 48.62a  | 66.95bc | 77.57de   | 121.40cd |
| A3R1       | 17.55bc            | 42.44ab | 76.02b  | 97.41bc   | 152.21b  |
| R5P7       | 18.08bc            | 31.60ab | 52.22c  | 80.09cde  | 157.14b  |
| A8R3       | 20.45bc            | 36.82ab | 54.32c  | 70.65e    | 106.91d  |
| A7R1       | 29.67a             | 37.80ab | 66.15bc | 98.12bc   | 119.57cd |
| A3R2       | 20.69bc            | 42.00ab | 72.74b  | 139.12a   | 183.83a  |
| A32R2      | 13.53c             | 44.43ab | 98.77a  | 121.69a   | 186.78a  |

Table 4. Leaf area (cm<sup>2</sup>) of Roselle accessions at different plant ages

Means with similar letters are not statistically different at 0.05 level of probability

Accession  $A_3^2R_2$  had a significantly higher leaf area than other RAs at 8 and 12 WAS, except  $A_3R_2$  at 12 WAS (Table 4). Meanwhile at 10 WAS, the highest leaf area was obtained from  $A_3R_2$  which varied significantly from other RAs except  $A_3^2R_2$  (Table 4).

At harvest, fresh calyx yield from  $A_3R_2$  (61.67 t/ha) was highest and statistically different from yield recorded from  $A_3R_1$ ,  $R_5V_7$ ,  $A_8R_3$ , and  $A_{12}R_3$  (Table 5). Conversely, no

significant statistical variation was observed among dry calyx yield and weight of 100 seeds from the 10 RAs, but  $A_6R_2$  had the best numerical values for the two traits (Table 5).

| Accession | Fresh calyx<br>yield (t/ha) | Dry calyx<br>yield (t/ha) | Weight of 100<br>seeds (kg) |
|-----------|-----------------------------|---------------------------|-----------------------------|
| A10R2     | 34.17ab                     | 1.27                      | 0.10                        |
| A12R3     | 24.17b                      | 0.89                      | 0.07                        |
| A6R2      | 43.33ab                     | 2.62                      | 0.37                        |
| A6R3      | 32.67ab                     | 1.85                      | 0.05                        |
| A3R1      | 16.67b                      | 0.37                      | 0.07                        |
| R5P7      | 22.50b                      | 1.05                      | 0.07                        |
| A8R3      | 23.34b                      | 1.40                      | 0.05                        |
| A7R1      | 25.84ab                     | 2.55                      | 0.07                        |
| A3R2      | 61.67a                      | 0.90                      | 0.07                        |
| A32R2     | 41.67ab                     | 1.85                      | 0.07                        |

Table 5. Calyx yield and weight of 100-seeds of Roselle accessions

Means with similar letters are not statistically different at 0.05 level of probability

Fresh and dry weight of weeds from plots sown to the 10 RAs ranged from 116 (A<sub>6</sub>R<sub>3</sub>) to 572 (A<sub>7</sub>R<sub>1</sub>) and 64 (A<sub>10</sub>R<sub>2</sub> and A<sub>6</sub>R<sub>3</sub>) to 284 g/ m (A<sub>7</sub>R<sub>1</sub>), respectively (Table 6). Moreover, the present least weed weights from plots sown to A<sub>10</sub>R<sub>2</sub> and A<sub>6</sub>R<sub>3</sub> compared favourably with weights of weed from all plots except where A<sub>7</sub>R<sub>1</sub> grew (Table 6). The later mentioned RA was statistically at par with other RAs for these two weed parameters except A<sub>10</sub>R<sub>2</sub> and A<sub>6</sub>R<sub>3</sub> (Table 6).

| Accession | Weed fresh     | Weed dry       |
|-----------|----------------|----------------|
|           | weight (g m-1) | weight (g m-1) |
| A10R2     | 136b           | 64b            |
| A12R3     | 300ab          | 146ab          |
| A6R2      | 208ab          | 106ab          |
| A6R3      | 116b           | 64b            |
| A3R1      | 220ab          | 112ab          |
| R5P7      | 352ab          | 168ab          |
| A8R3      | 204ab          | 108ab          |
| A7R1      | 572a           | 284a           |
| A3R2      | 220ab          | 106ab          |
| A32R2     | 316ab          | 158ab          |

Table 6. Weed weights (g m<sup>-1</sup>) from plots sown to ten Roselle accessions

Means with similar letters are not statistically different at 0.05 level of probability

#### DISCUSSION

Assessment of the present Roselle germplasm for agronomic and weed-suppressive potentials is germane for multiple production and industrial applications including the development of eco-friendly sustainable alternatives to herbicides. Significant variation among the RAs for agronomic and weed-suppressive traits suggests the existence of genotypic variability among the Roselle in the present germplasm. This finding aligns with previous documentation in the literature on Roselle and highlights the need for proper selection before propagation, based on production objectives (Gasim and Khidir, 1998; Atta et al., 2011; Ayipio et al., 2018). Meanwhile, the increase in growth parameters of the RAs with plant age corroborates the earlier report of Norhayati et al. (2019) on Roselle. This might be the tandem effect of continuous division and enlargement of cells in the Roselle plants during the growth period which enhanced their stem elongation and width; as well as leaf quantity and dimension as the plants age increased (Lastdrager et al., 2014). The observed fast growth rate of the RAs as revealed by the growth parameters validates the earlier assertion of Yirzagla et al. (2023) that Roselle grows rapidly. Notably, the plant height and width of the RAs stems at 12 WAS were within the range earlier reported by El-Naim et al. (2012) and Norhayati et al. (2019). The range of quantity and area of leaves produced by the RAs at 12 WAS, 92.75-145.00 and 106.91-186.98 cm<sup>2</sup>, respectively affirms the fact that Roselle is a prolific broadleaves producer as reiterated by Yirzagla et al. (2023) and Pelczar (2024).

The consistent lower heights of accessions A10R2, A12R3, A6R2, and A32R2 at 4 and 6 WAS relative to other RAs suggests a slower initial growth rate which can be optimized for intercropping, the predominant farming system in Southwestern, Nigeria. This will serve multiple purposes of early weed control, food, and income generation for farmers before the maturity of Roselle. Roselle has been successfully intercropped with various crops ranging from vegetables to maize and legumes (Avipio et al., 2018; Banjaw et al., 2020). Accessions A<sub>6</sub>R<sub>2</sub>, A<sub>6</sub>R<sub>3</sub>, A<sub>8</sub>R<sub>3</sub>, A<sub>7</sub>R<sub>1</sub>, and A<sub>3</sub>R<sub>2</sub> with broadest stems at 12 WAS can find application for pulp and paper making a sequel to the valuable use of Roselle for this purpose as submitted by Kalita and Boruah (2022). The significant and maximum fresh calyx yield from A<sub>3</sub>R<sub>2</sub> highlights its genetic potential for assimilate partitioning to this sink (calyx) of premium economic importance, which could have been enhanced by its supra leaf area. Since the dry yield of produce defines their biological yield and in tandem profitability index, the record of significant similarity in dry calyx yield of the RAs suggests that they accumulated dry matter to the same extent. Similarly, the statistically comparable 100-seed weights highlight similarities in their reproductive potential. However, it is worthy of note that A<sub>6</sub>R<sub>2</sub> has numerically better potential for calyx dry matter and seed weight accumulation than the other RAs.

The range of dry calyx yield recorded in this study was higher than the range of 0.19-0.51 t/ ha reported by Yirzagla et al. (2023) from a separate survey of Roselle.

The record of significantly identical weed weights from all plots except where V<sub>7</sub>R<sub>1</sub> grew, suggests that the RAs suppressed weed growth to the same extent despite variation in their growth and morphology. Roselle has been reported to contain growth-inhibitory substances and also express allelopathic activity (Pukclai and Kato-Noguchi, 2011). Hence, the present finding might have stemmed from the similarity in their allelopathy effect on surrounding weeds via the possible release of biochemical compounds. It is therefore presumed that the weed-suppressive efficacy of the RAs was not largely dependent on their morphology but on their genetic capacity for this trait.

# CONCLUSION

From an overview of this study, it can be concluded that the evaluated Roselle accessions have promising agronomic and weed-suppression potentials. The selection of premium accession is dependent on the farmers' production preference. However, accession  $A_6R_2$  is recommended for propagation due to its high yield of dry calyxes and seed weight, while  $A_3R_2$ ,  $A_3^2R_2$ ,  $A_3R_1$ ,  $V_{10}R_2$ , and  $V_6R_3$  with the least and comparable weed weights can be used to check weeds growth either solely or as a companion crop in intercropping system.

# **Conflict of Interest**

The authors have declared that no conflict of interest exist with respect to this paper.

# Authors contribution

AOA and UIO conceptualized the research. All the authors executed the experiment and contributed to the writing of the manuscript.

# REFERENCES

Atta S, Seyni HH, Bakasso Y, Sarr B, Lona I, Saadou M., 2011. Yield character variability in Roselle (*Hibiscus sabdariffa* L.). African Journal of Agricultural Research, 6(6): 1371-1377.

Ayipio E, Abu M, Agyare RY, Azewonggik DA, Bonsu SK., 2018. Growth and yield performance of Roselle accessions as influenced by intercropping with maize in the Guinea Savannah ecology of Ghana. International Journal of Agronomy, 2018: 10.1155/2018/9821825

Banjaw DT, Megersa HG, Lema DT., 2020. Growth and yield performance of Roselle (*Hibiscus sabdariffa* L.) to intercropping practices: A review. Advances in Life Sciences and Technology, 84: 1-2.

El-Naim AM, Khaliefa EH, Ibrahim K., Ismaeil FM, Zaied MMB., 2012. Growth and yield of Roselle as influenced by plant population in arid Tropic of Sudan under rainfed. International Journal of Agriculture and Forestry, 2(3): 88-91.

Gasim SM, Khidir MO., 1998. Genetic variability of some characters in Roselle (*Hibiscus sabdariffa* var sabdariffa L.). University of Khartoum Journal of Agriculture, 6(1): 22-33.

IIIyas RA, Sapuan SM, Kirubaanand W, Zahfiq ZM, Atikah MSN, Ibrahim R, Radzi AM, Nadlene R, Asyraf MRM, Hazrol MD, Sherwani SFK, Harussani MM, Tarique J, Nazrin A, Syafiq R., 2021. Roselle: Production, product development, and composites. In Roselle (pp. 1-23). United States: Academic Press.

Kalita BB, Boruah S., 2022. Pulping and papermaking from roselle (Hibiscus sabdariffa L.). Pulping and Papermaking of Nonwood Plant Fibers, 157-169.

Lastdrager J, Hanson J, Smeckens S., 2014. Signals and the control of plant growth and development. Journal of Experimental Biology, 65(3): 799- 807.

Mohamed BB, Sulaiman AA, Dahab AA., 2012. Roselle *Hibiscus sabdariffa* L. in Sudan, cultivation and their uses. Bulletin of Environment, Pharmacology and Life sciences, 1(6): 48-54.

Norhayati Y, NG, WH, Adzemi MA., 2019. Effect of organic fertilizers on growth and yield of Roselle (*Hibiscus sabdariffa* L.) on BRIS soil. Malaysian Applied Biology, 48(1): 177-184.

Olofsdotter M, Jensen LB, Courtois B., 2002. Improving crop competitive ability using allelopathy- an example from rice. *Plant Breeding*, 121(1): 1-9

Pelczar R., 2024. How to plant and grow Roselle. Available at: <u>https://www.bhg.com/how-to-plant-and-grow-roselle-7500662. Accessed 25 May 2024</u>

Pukclai P, Kato-Noguchi H., 2011. Evaluation of allelopathic activity of *Hibiscus sabdariffa* L. Advances in Biological Research, 5: 366-372.

Ranjan S., 2019. Hibiscus sabdariffa-Roselle. In Medicinal plants in India: Importance and cultivation. New Delhi: Jaya Publishing House.

Satyanarayana NH, Mukherjee S, Roy S, Bhanu P, Sarkar KK, Bandhopadhyay P., 2015. Genetic divergence studies for fibre yield traits in Roselle (*Hibiscus sabdariffa* L.) in the Terai zone of West Bengal. Journal of Crop and Weed, 11(2015): 90-94.

Ugaoo. 2024. The roselle plant: an edible flowering delight. Available at https://www.ugaoo.com/blogs/gardening-basics/roselle-flowers-an-edible-gargening-delight. Accessed 25 May 2024.

Vasavi CL, Jyothi AS, Sravani P, Chand TP, Adil SK, Raja RR, Baba KH., 2019. *Hibiscus cannabinus* and *Hibiscus sabdariffa* phyto pharmacognostic review. Journal of Pharmacognosy and phytochemistry, 8(1): 313-318.

Yirzagla J, Quandahor P, Amoako OP, Akologo LA, Lambon JB, Imoro AM, Santo KG,<br/>AkanbelumOA.,<br/>2023.Yield<br/>yieldof<br/>Roselle(Hibiscus sabdariffa L.) as influenced by Manure and Nitrogen Fertilizer. American<br/>Journal of Plant Sciences, 14(5): 599-612. https://doi.org/10.4236/ajps.2023.145040